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ABSTRACT

The detection of moving objects in complex scenes is the basis of many applications in surveillance, event
detection, and tracking. Complex scenes are difficult to analyze due to camera noise and lighting conditions.
Currently, moving objects are detected primarily using background subtraction algorithms, with block matching
techniques as an alternative. In this paper, we complement our earlier work on the comparison of background
subtraction methods by performing a similar study of block matching techniques. Block matching techniques
first divide a frame of a video into blocks and then determine where each block has moved from in the preceding
frame. These techniques are composed of three main components: block determination, which specifies the
blocks; search methods, which specify where to look for a match; and, the matching criteria, which determine
when a good match has been found. In our study, we compare various options for each component using publicly
available video sequences of a traffic intersection taken under different traffic and weather conditions. Our results
indicate that a simple block determination approach is significantly faster with minimum performance reduction,
the three step search method detects more moving objects, and the mean-squared-difference matching criteria
provides the best performance overall.

Keywords: block matching, moving object detection

1. INTRODUCTION

Detection of moving objects is difficult due to camera noise, lighting conditions, object orientation and size.
Detection is primarily done by first preprocessing the frame to reduce noise and the effect of different lighting
conditions, followed by background subtraction. Background subtraction is the process of subtracting a frame
that models the background from the current frame. The simplest case of background subtraction is frame
differencing, where the background model is the previous frame. After background subtraction, pixels in the
resulting frame produce a foreground mask of moving pixels. These pixels are then combined to produce moving
objects.

Block matching offers an alternative to background subtraction for object detection. In block matching,
blocks in the current frame are matched to blocks in a reference frame (an earlier frame). For each block in the
current frame, the reference frame is searched for the best matching block. A matching criteria determines the
best match from candidate blocks in the reference frame. If the matched block is not in the same location in
the reference frame as in the current frame, the block has moved. A foreground mask of the moving blocks is
then generated. Blocks with the same motion can be combined to form moving objects. Block matching adds
the additional information of block motion, making block matching attractive for tracking applications. Block
matching is extensively used in compression' to detect motion. In this paper, we present a detailed evaluation
of the various implementations of block matching for use in detecting moving objects.

Block matching techniques can be divided into three components: block determination, searching method, and
matching criteria. For each component, a comparison of several options is performed. We begin with Section 2
describing the block matching components studied. Section 3 follows with details on the data sequences evaluated
and the results of the metrics used. We end with conclusions drawn from the empirical study in Section 4.
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Figure 1. Block Matching Flowchart

2. BLOCK MATCHING TECHNIQUES

Block matching techniques can be divided into three main components as shown in Figure 1: block determination,
search method, and matching criteria. The implementation of block matching using components allows for
flexibility; interchanging components produces a large variety of block matching techniques and based on the
application, components which provide the best results can be chosen with ease.

2.1. Block Determination Approaches

Block matching techniques begin by determining the location, the size, and the scale of blocks, as well as the
start location of the search. We examine both a simple and a hierarchical approach. Variable-size approaches
are also used in compression algorithms.?™* In a variable-size approach the block sizes are not fixed and vary in
size based on a homogeneity metric (test for similarity). The variable-size approaches are designed primarily to
reduce bit-rate by reducing the number of motion vectors which represent a frame. Since our focus is moving
object detection and speed of processing, not compression, we did not consider a variable-size approach.

In the simple block determination approach, each block is a portion of the frame at a fixed size. All
blocks are disjoint, and there is no change in the scale of a block. A block size which does not encompass an
entire object, but allows for several blocks to form an object is chosen. The search is started at the same block
location in the reference frame.

In the case of hierarchical block determination, a multiresolution approach is used to determine the block
location, size, and scale. First, a Gaussian pyramid® of the current and the reference frame is constructed. At
each level of the pyramid, the frame is divided into disjoint fixed size blocks as in the simple block determination
approach. The search begins at the same location of the block in the lowest resolution reference frame; at each
subsequent level the search starts at the best match from the previous level.

2.2. Search Method

The search method determines candidate matching blocks in the reference frame. We examine 4 search methods;
a window search, three-step search,® 2D-logarithmic search,” and cross search.® Each search method searches
the reference frame at a given step size. The step size is the number of pixels from the center candidate block to
the other candidate blocks based on the search pattern.

Although we focus our evaluation on search methods which reduce the number of candidate blocks, there are
also search methods that reduce the processing within a block. There are two common methods, one uses only
a sample of pixels in a block to determine a match,” 9 the other uses partial sums to speed up processing of a
block.'''12 These methods concentrate on reducing processing time with a slight reduction in accuracy and can
be incorporated into any search method.

e In the window search, a window in the reference frame is searched at a given step size. The size of
the window is dependent upon the motion of the objects in the frame. The window size is chosen to be
slightly larger than the maximum possible motion of the objects. This reduces the search area based on
the application. A step size equal to one pixel is a full search of the window, finding the optimal motion
vectors. A larger step size increases the speed by reducing the number of candidate blocks, but increases
motion vector error.



e The three-step search (TSS) begins with eight candidate neighbor blocks a given step size away. The
search is a recursive process with each iteration centered at the best match from the previous iteration and
the step size, s, is halved, until a step size of one is reached. The three-step search reduces the number of
candidate blocks and covers a large area, making it a fast search technique. The approach concentrates on
directing the search based on the best match from the previous step.

e The cross search is similar to TSS, except the candidate blocks are limited to four neighbors (cross
pattern, x) in each iteration rather than eight as in the case of T'SS. The search is faster than TSS due to
the further reduction in candidate blocks. The last step in the search is a cross (x) or plus (4) pattern
depending on the location of the best match so far.

e The 2D-logarithmic search has four neighbors (plus pattern, 4) in each iteration. The step size is only
reduced when the center candidate block of the previous iteration is the best match. The last step in the
search is an eight neighbor pattern.

With the last eight neighboring blocks and the potential for additional iterations (step size not reduced at
each iteration), the 2D-logarithmic search is slower than the cross search but covers more area. In order to
limit the search area the 2D-logarithmic search can be restricted to a search window reducing the number
of possible candidate blocks.

The three-step, 2D-logarithmic, and the cross search are designed for speed to reduce the number of candidate
blocks. However, unlike the window search, there is a potential to be trapped in a local minima in these searches.
The window search with a step size of one is a full search trying all possible candidate blocks.

2.3. Matching Criterion

Given an n X n block, a matching criteria, M (p, ¢), measures the dissimilarity of a block in the current frame,
I. at (i,7), and a block in the reference frame, I, shifted by (p,q). These criteria can be characterized by
M(p,q) = St Z?H_l ¢(e), where ¢(e) is the criteria function and e = I.(i,j) — I.( + p,j + q). We
examine four matching criteria (also known as error or matching functions): the sum of the absolute values of
the differences (SAD), the mean of the absolute values of the differences (MLAD), the mean of the square of
the differences (MSD), and the sum of the non-matching pixels in the two blocks (MPC), where a match is
determined by the absolute value of the difference being less than a threshold, ty;pc.

SAD and MAD only differ by a constant in the case of fixed size blocks and can be used interchangeably in
our comparison. Practically, SAD is faster due to the removal of the divide operation. While MAD incorporates
large differences, MSD penalizes more for large differences. MPC on the other hand equally weights any difference
above a threshold.

2.4. Zero-Motion Bias

To reduce the effect of noise, we incorporate zero-motion biasing into all block matching techniques. All searches
begin with a check for zero-motion, that is, the current block is compared with the block at the same location in
the reference frame. If zero-motion is a “good” match (within a threshold), the search is terminated, resulting
in a motion vector with no motion, (7, j) = (0,0) . Otherwise one of the search methods is used. As shown in
Figure 2, zero-motion biasing reduces false motion; it also reduces the processing time by eliminating searches.
In our work, the choice of zero-motion bias threshold is determined empirically based on the application.

3. EXPERIMENTS

Our focus is on the comparison of block matching techniques for moving object detection. The experiments
consist of four image sequences of traffic. We examine the detection of moving objects and processing speeds for
a variety of block matching components.



Figure 2. Example of reduced noise and false motion using zero-motion biasing. From left to right the frames are,
original (left); manually highlighted ground truth (center left); highlighted motion blocks from block matching (center
right); and the same block matching technique with zero-motion biasing (right). The simple block determination
approach is applied with 8 x 8 block size, the window search method with a step size of one and 15 x 15 window size,
and SAD matching criteria, with the zero-motion bias threshold of 250.0.

3.1. Data

The traffic sequences tested are publicly available from a website maintained by KOGS/TAKS Universitaet
Karlsruhe.* Figure 3 shows a sample frame from each of the traffic sequences used. The sequences are of varying
traffic and weather conditions:

e Bright (1500 frames): Bright daylight with “stop-and-go” traffic
e Fog (300 frames): Heavy fog with traffic patterns similar to the Bright sequence.
e Snow (300 frames): Snow with low to moderate traffic.

e Busy (300 frames): Busy intersection with vehicles and pedestrians and a large shadow from a building.

Bright, Fog, and Snow are sequences of the same intersection. The Fog and Snow sequences are converted from
color to luminance only.

3.1.1. Ground truth

Ground truth measurements are accurate results used for comparison with the results from the block matching
algorithms to evaluate system performance of these algorithms. We used both ground truth masks and object
motion vectors as ground truth measurements for our experiments.

The ground truth masks are manually highlighted moving pixels (including shadows). The frames used to
generate the ground truth masks are selected from the latter part of each sequence at regular intervals. Ten
ground truth masks from each test sequence are created. Connected components in the ground truth masks
are considered an object. There are a total of 81 objects in the ground truth masks of the Bright sequence, 73
objects in the Fog sequence, 83 objects in the Snow sequence, and 251 objects in the Busy sequence.

In order to accurately compare the block matching techniques, we use a “blocky” version of the ground truth.
The frame is divided into the block sizes tested; if a block contains highlighted pixels from the ground truth
mask the entire block is highlighted. A sample frame with the “blocky” version of the ground truth masks is
shown in Figure 3.

Object motion vectors are obtained by manually finding the best match for an object (connected components).
This process is extremely time consuming and therefore is only done for one frame per sequence. Object motion
vectors are found from the first ground truth mask in each sequence. There are a total of 13 objects in the first
ground truth mask of the Bright sequence, 11 objects in the Fog sequence, 11 objects in the Snow sequence, and
40 objects in the Busy sequence.

*All sequences are copyrighted by H.-H. Nagel of KOGS/IAKS Universitaet Karlsruhe. http://i21www.ira.uka.de/
image_sequences



Figure 3. The first row contains frames from the Bright sequence: sample frame (left), manually highlighted ground
truth frame (center), and the corresponding “blocky” (8x8 blocks) ground truth frame (right). The second row has
a sample frame from the other sequences: Fog (left), Snow (center), and Busy (right).

3.2. Results

We begin with a comparison of the matching criteria, followed by the search methods, and, finally, the block
determination approaches.

3.2.1. Evaluation of matching criteria

In order to compare the matching criteria, matching blocks were determined using the simple block determination
approach with 8x8 blocks, and a window search with step size of 1 and a 15x15 window. This is the equivalent
of a full search with zero-motion biasing. As a measure of performance, precision-recall curves were generated
for each of the matching criteria by varying the zero-motion bias threshold. As MPC also has a threshold to
determine pixel matches, we examine three values of the MPC threshold: 3, 5, and 10.

The precision, P, is a measure of the accuracy of the detection and the recall, R, is a measure of moving
objects detected.

_ # of moving pixels correctly detected

P __ # of moving pixels correctly detected

d R= .
# of moving pixels detected an # of moving pixels in the ground truth

Ideally, a precision and recall of one is the goal. Most often, an increase in recall leads to a decrease in precision,
as more moving pixels are being detected along with a greater number of non-moving object pixels.

Figure 4 shows the results for each sequence. As the zero-motion bias threshold increases (right-to-left in
Figure 4), the noise is reduced increasing precision until eventually (at the knee of the curve), moving object
pixels are removed and the recall decreases. MSD gives the best overall results and MPC with ¢ ;pc = 10 closely
follows for each sequence. Recall is reduced by about 10% in the sequences when using SAD (or MAD) instead
of MSD.

The average precision-recall curves over all four sequences with the corresponding average process timing is
also shown in Figure 4. The average precision-recall curves are generated by averaging the results of all sequence
for a given matching criterion and threshold. We observe that the MSD and MPC (¢j;pc = 10) matching criteria
have comparable results. The other matching criteria have a visible reduction in precision and recall at the knee
of the curves. The corresponding process timing shows that MSD is faster than MPC with ¢y, pc = 10.
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Figure 4. The first two rows are precision-recall curves of matching criteria with varying zero-motion bias threshold
for the four video sequences. The third row has on the left, the average precision-recall curves of the four sequences
for matching criteria with varying zero-motion bias threshold, and on the right is the corresponding average process
timing over the frames and sequences for a given zero-motion bias threshold.




3.2.2. Evaluation of search methods

To compare search methods and block determination approaches, we use two metrics. These two metrics require
the identification of an object, which is defined as a connected component in the ground truth frames. The first
metric is a coherence metric, which measures the deviation of block motion within an object. The second metric
is the average magnitude of the object motion vector error.

The search methods are compared using the simple block determination approach with 8x8 blocks, and the
MSD matching criterion. The TSS, 2D-logarithmic, and cross search methods begin with a step size of 4 and
the window search has a step size of 1. The sequences have a maximum observed motion vector of 5.7 pixels.
The motion vector coherence within an object is illustrated using error ellipses formed from the covariance
matrix of an object.’® A tight ellipse indicates that the motion vectors within an object are coherent. Although
the error ellipses give insight into the coherence of an object, they may be co-occurring ellipses, and a simple
visual inspection may not accurately indicate the overall performance of a search method. To address this, the
percentage of objects detected with error ellipses that fit in a circle of radius p (an object motion vector error
with standard deviation < p) are also examined. The higher the percentage, the better the method, with 100%
indicating all objects detected.

We make the following observations for the performance measured using the coherence metric.

e Bright: In Figure 6, the cross method has tighter error ellipses, signifying greater coherence of the object
motion vectors than the other search methods. But from Figure 7, we see the cross search has fewer objects
detected overall than the TSS and the window search.

e Fog: In Figure 8, the cross method appears to have the tighter error ellipses, and the 2D-logarithmic search
has elongated ellipses showing the tendency of the error in a particular direction. From Figure 9, the
2D-logarithmic search has a higher percentage of objects detected within a given error range. Figure 5
shows results from a region in a frame in the Fog sequence. We see in the 2D-logarithmic search a bias in
the vertical direction.

Figure 5. An example frame illustrating the motion vector blocks from the Fog sequence using the cross search
(far left), TSS search (center left) methods, 2D-logarithmic search (center right), and window search (far
right) methods, the simple block determination approach with 8x8 blocks, the MSD matching criterion. The search
methods have step size of 4, except the window search method which has step size of 1.

e Snow: In Figure 10, there is no significant difference between the search methods. Figure 11 confirms this
observation.

e Busy: In Figure 12, the cross method has the tightest error ellipses, but the window search seems to have
a denser core. In Figure 13, the window search and TSS have no significant difference, but there is a clear
distinction from the 2D-logarithmic search and the cross search, which detect fewer objects.
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The plots are generated from the simple block determination approach with 8 x8 blocks, and the MSD matching
criterion. The searches have a step size of 4, except the window search which has a step size of 1.
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The plots are generated from the simple block determination approach with 8 x8 blocks, and the MSD matching
criterion. The searches have a step size of 4, except the window search which has a step size of 1.




E| Cross | TSS | Log | WIN Timing (ms) | Cross | TSS | Log | WIN
Bright 2.6 25 | 23 2.5 Bright 28 19 24 31

Fog 2.1 2.1 1.9 2.2 Fog 24 27 22 30
Snow 1.8 1.7 | 1.9 1.8 Snow 27 30 27 43
Busy 1.5 16 | 1.7 1.7 Busy 25 25 25 78

Table 1. Average magnitude of object motion vector er-
ror using the simple approach with 8x8 blocks, the MSD
matching criterion. Cross, TSS, and Log search methods
have a step size of 4 and WIN has a step size of 1.

Table 2. Process timing of the simple block determi-
nation approach with 8x8 blocks, the MSD matching
criterion. Cross, TSS, and Log search methods have a
step size of 4 and WIN has a step size of 1.

The average magnitude of the object motion vector error, |E_"|, is used to evaluate the search methods and

block determination approaches. Table 1 shows |E | in pixels for each search method using the simple block
determination approach with 8x8 blocks, and the MSD matching criterion. The cross, TSS, and 2D-logarithmic
searches have a step size of 4 and the window search has a step size of 1. The average magnitude of the object
motion vector error is within 0.3 pixels of each other for all sequences, showing no significant difference in
performance. The process timing of the search methods seen in Table 2 are also comparable for the three fast
searches with the window search having a significantly higher process timing as expected.

3.2.3. Evaluation of block determination approaches

We compare two block determination approaches: a simple approach and a hierarchical approach. These ap-
proaches are evaluated using the coherence metric and average magnitude of object motion vector error. Figure 14
shows that the hierarchical approach clearly has tighter error ellipses in the Fog and Snow sequences. In Fig-
ure 15, we see that the hierarchical approach has an equal or larger percentage of objects over all pixel ranges.
Figures 16-17 show an example frame from the Fog and Snow sequences using the two block determination
methods. The hierarchical approach is seen as more coherent than the simple approach.
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Figure 14. Each column is from a different sequence, column 1: Bright, column 2: Fog, column 3: Snow, and column
4: Busy. The plots show error ellipses of motion vectors within an object, row 1 uses the simple block determination
approach and row 2 uses the hierarchical block determination approach, all plots use 8x8 blocks, the TSS search
method, the MSD matching criterion, and step size of 4.

The hierarchical approach has a slightly lower average magnitude of object motion vector error than the
simple block determination approach as seen in Table 3, but the processing time of the hierarchical approach
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Figure 15. Percentage of objects that fit in an error circle of radius p for simple and hierarchical block determination
approaches with 8 X8 blocks, the TSS search method, the MSD matching criterion, and step size of 4.

Figure 16. An example region of detected motion vec- Figure 17. An example region of detected motion vec-
tor blocks from the Fog sequence using the simple tor blocks from the Snow sequence using the simple
block determination (left) and hierarchical block block determination (left) and hierarchical block
determination (right) approaches with the TSS search determination (right) approaches with the TSS search
method, 8x8 blocks, the MSD matching criterion, and method, 8x8 blocks, the MSD matching criterion, and
step size of 4. step size of 4.

is significantly higher seen in Table 4. From this study it is clear the improvement of coherent object motion
vectors in the hierarchical approach is at the high cost of process timing.

4. CONCLUSIONS

We have presented an empirical study of a variety of options for block matching techniques with a focus on
moving object detection. In videos illustrating several different traffic and weather conditions, the MSD matching
criteria outperforms the other matching criteria for both moving object detection (precision-recall) and process
speed using zero-motion biasing. For search methods, the methods are comparable (in coherence and average
magnitude of object motion vector error metrics) with the 2D-logarithmic search performing the best in the Fog
sequence and TSS has the best performance in the Busy sequence. Overall TSS detects more moving objects.
Also, the simple block determination approach, though not as coherent as the hierarchical approach in the Fog

|E| | SIM | HIER
Bright | 2.5 2.5 Timing | SIM | HIER
Fog 2.1 1.5 Bright | 24ms | 766ms
Snow | 1.8 1.6 Fog 22ms | 1.142s
Busy | 1.6 1.6 Snow | 8ms | 1.138s
Busy | 21ms | 625ms

Table 3. Average magnitude of object motion vector er-
ror using the simple block determination and hierarchi- Table 4. Process timing of block matching techniques
cal approach with 8x8 blocks, the T'SS search method, using 8x8 blocks, the TSS search method, the MSD
the MSD matching criterion, and step size of 4. matching criterion, and step size of 4.




and Snow sequences, has comparable results in the average magnitude of object motion vector error and 1-2
orders of magnitude improvement in processing speed.
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